JETIR.ORG

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

SOME NEW TYPES OF $_{\tilde{g}}(1,2)^*$ -CONTINUOUS MAPS IN BITOPOLOGICAL SPACES

C. SHANMUGA VADIVU¹, M. MOHAMED SHERIFF² AND A. PANDI³

¹Assistant Professor and Head, PG and Research Department of Mathematics, Sethupathy Govt. Arts College, Ramanathapuram-623 502, Tamilnadu, India.

E-mail: nasha11080@gmail.com

²Associate Professor, Department of Mathematics, H.K.R.H. College, Uthamapalayam, Tamilnadu, India.

E-mail: sheriffhodmaths@gmail.com

³Assistant Professor, Department of Mathematics, Rathinam Technical Campus, Coimbatore-21, Tamil Nadu, India.

E-mail: pandi2085@yahoo.com.

Abstract: In this paper, we introduce the new type of $\tilde{g}(1,2)^*$ -continuous maps. As application to $\tilde{g}(1,2)^*$ -open sets. We also discuss some properties of $\tilde{g}(1,2)^*$ -continuous maps and $\alpha \, \tilde{g}(1,2)^*$ -continuous maps.

Key words and Phrases: $\tilde{g}(1,2)^*$ -open, $\tilde{g}(1,2)^*$ -continuous, $\alpha \tilde{g}(1,2)^*$ -continuous.

1.INTRODUCTION

Levine [7], introduced the generalized closed sets in topology. Kelly [6] introduced the concepts of bitopological spaces. Recently Sheik John [18] introduced and studied another form of generalized continuous maps called ω -continuous maps respectively. Abd El-Monsef and et al. [1], introduced the β -open sets and β -continuous mapping, Andrijevic [2], introduced semi-preopen sets. Arya and et al. [3], introduced the characterization of s-normal spaces. Bhattacharya [4], introduced semi-generalized closed sets in topology. Duszynski [5], introduced a new generalization of closed sets in bitopology. Rajamani and et al. [9], introduced on α gs-closed sets in topological spaces. Ravi and et al. [13], on stronger forms of $(1,2)^*$ -quotient mappings in bitopological spaces.

In this paper, we introduce the new type of $\tilde{g}(1,2)^*$ -continuous maps. As application to $\tilde{g}(1,2)^*$ -open sets. We also discuss some properties of $\tilde{g}(1,2)^*$ -continuous maps and $\alpha \tilde{g}(1,2)^*$ -continuous maps.

2.PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) (briefly, X) will denote bitopological space (briefly, BTPS).

Definition 2.1 Let H be a subset of X. Then H is said to be $\tau_{1,2}$ -open [11] if $H = P \cup Q$ where $P \in \tau_1$ and $Q \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 [11] Let H be a subset of a bitopological space X. Then

- (i) the $\tau_{1,2}$ -closure of H, denoted by $\tau_{1,2}$ -cl(H), is defined as $\cap \{F : H \subseteq F \text{ and } F \text{ is} \}$
- (ii) the $\tau_{1,2}$ -interior of H, denoted by $\tau_{1,2}$ -int(H), is defined as $\cup \{F : F \subseteq H \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$.

Definition 2.3 A subset H of a BTPS X is called:

- (i) $(1,2)^*$ -semi-open set [10] if $H \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(H));
- (ii) $(1,2)^*$ -preopen set [10] if $H \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(H));
- (iii) $(1,2)^*$ - α -open set [8] if $H \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(H)));
- (iv) $(1,2)^*$ - β -open set [12] if $H \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(H)));
- (v) regular $(1,2)^*$ -open set [10] if $H = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(H)).

The complements of the above-mentioned open sets are called their respective closed sets.

Definition 2.4

A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $(1,2)^*$ - \ddot{g}_{α} -continuous [17] if $f^{-1}(V)$ is an $(1,2)^*$ - \ddot{g}_{α} -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (ii) $(1,2)^*-\psi$ -continuous [15] if $f^1(V)$ is a $(1,2)^*-\psi$ -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (iii) $(1,2)^*$ - \hat{g} -continuous [15] if $f^{-1}(V)$ is a $(1,2)^*$ - \hat{g} -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (iv) $(1,2)^*$ -g-continuous [16] if $f^1(V)$ is a $(1,2)^*$ -g-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (v) $(1,2)^*$ - \ddot{g} -continuous [17] if $f^{-1}(V)$ is an $(1,2)^*$ - \ddot{g} -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (vi) $(1,2)^*-\alpha$ g-continuous [10] if $f^{-1}(V)$ is an $(1,2)^*-\alpha$ g-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (vii) (1,2)*-gs-continuous [14] if $f^{-1}(V)$ is a (1,2)*-gs-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (viii) $(1,2)^*$ -gsp-continuous [14] if $f^{-1}(V)$ is a $(1,2)^*$ -gsp-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (ix) $(1,2)^*$ -sg-continuous [11] if $f^{-1}(V)$ is a $(1,2)^*$ -sg-closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (x) $(1,2)^*$ -semi-continuous [11] if $f^{-1}(V)$ is a $(1,2)^*$ -semi-open set of X for every $\sigma_{1,2}$ -open set V of Y.
- (xi) $(1,2)^*-\alpha$ -continuous [10] if $f^{-1}(V)$ is an $(1,2)^*-\alpha$ -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.
- (xii) (1,2)*-continuous [11] if $f^{-1}(V)$ is a $\tau_{1,2}$ -closed set of X for every $\sigma_{1,2}$ -closed set V of Y.

Remark 2.5 [16]

- (i) Every $\tau_{1,2}$ -open is $(1,2)^*$ \ddot{g} -open but not conversely.
- (ii) Every $(1,2)^*$ \ddot{g} -open is $(1,2)^*$ \ddot{g}_{α} -open but not conversely.
- (iii) Every $(1,2)^*$ - \ddot{g} -open is $(1,2)^*$ - ψ -open but not conversely.
- (iv) Every $(1,2)^*$ \ddot{g} -open is $(1,2)^*$ - \hat{g} -open but not conversely.
- (v) Every $(1,2)^*$ \ddot{g} -open is $(1,2)^*$ -g-open but not conversely.
- (vi) Every $\tilde{g}(1,2)^*$ -open is $(1,2)^*$ αg -open but not conversely.
- (vii) Every $(1,2)^*$ \ddot{g} -open is $(1,2)^*$ α g-open but not conversely.

- (viii) Every $(1,2)^*$ - \ddot{g} -open is $(1,2)^*$ -gs-open but not conversely.
- (ix) Every $(1,2)^*$ - \ddot{g} -open is $(1,2)^*$ -gsp-open but not conversely.
- (x) Every $(1,2)^*$ - \ddot{g} -open is $(1,2)^*$ -sg-open but not conversely.

3. \tilde{g} (1,2)*-CONTINUOUS MAPS

We introduce the following definitions:

Definition 3.1

A map $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

- (i) $\tilde{g}(1,2)^*$ -continuous if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $\tilde{g}(1,2)^*$ -closed set in X.
- (ii) $\alpha \tilde{g}(1,2)^*$ -continuous if the inverse image of every $(1,2)^*$ α -closed set in Y is $\tilde{g}(1,2)^*$ -closed in X.

Example 3.2

- (i) Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{c\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{c\}, \{a, c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b\}, \{a, b\}\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b\}\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}\}$. Then the sets in $\{\phi, Y, \{b\}, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{a, c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - \ddot{G} $C(X) = \{\phi, \{b\}, \{a, b\}, X\}$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ - \ddot{g} -continuous.
- (ii) Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tilde{g}(1,2)^*$ -continuous.

Proposition 3.3

Every $(1,2)^*$ -continuous map is $(1,2)^*$ - \ddot{g} -continuous but not conversely.

Proof

The proof follows from Remark 2.5 (i).

Example 3.4

The map f in Example 3.4.2 (i) is $(1,2)^*$ - \ddot{g} -continuous but not $(1,2)^*$ -continuous, since $f^{-1}(\{a\}) = \{a\}$ is not $\tau_{1,2}$ - open in X.

Proposition 3.5

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ - \ddot{g}_{α} -continuous but not conversely.

Proof

The proof follows from Remark 2.5 (ii).

Example 3.6

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b, c\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{b, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $\ddot{G}C(X) = \{\phi, \{a, c\}, X\}$ and $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \tau_2)$ be the identity map. Then f is $(1,2)^*$ - \ddot{g}_{α} -continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{a\}) = \{a\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.7

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ - ψ -continuous but not conversely.

Proof

The proof follows from Remark 2.5 (iii).

Example 3.8

Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}\$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b, c\}\}\$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a, c\}\}\$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, c\}\}\$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{b\}\}\$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^* - \ddot{G}C(X) = \{\phi, \{b, c\}, X\} \text{ and } (1,2)^* - \psi C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}. \text{ Let } f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*-\psi$ -continuous but not $(1,2)^*-\ddot{\varphi}$ -continuous, since $f^{-1}(\{b\})=\{b\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.9

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ - \hat{g} -continuous but not conversely.

Proof

The proof follows from Remark 2.5 (iv).

Example 3.10

Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{d\}, \{b, c, d\}\}\$ and $\tau_2 = \{\phi, X, \{b, c\}\}\$. Let $\sigma_1 = \{\phi, Y, \{b\}\}\$ and $\sigma_2 = \{\phi, Y\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ - \hat{g} -continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{a, c, d\}) = \{a, c, d\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.11

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ -g-continuous but not conversely.

Proof

The proof follows from Remark 2.5 (v).

Example 3.12

Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}\ \text{and}\ \tau_2 = \{\phi, X, \{b, c\}\}\$. Then the sets in $\{\phi, X, \{a\}, \{b, c\}\}\$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{b, c\}\}\$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{c\}\}\$ and $\sigma_2 = \{\phi, Y, \{c\}\}\$ $\{\phi, Y\}$. Then the sets in $\{\phi, Y, \{c\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a, b\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^* - \ddot{G}C(X) = \{\phi, \{a\}, \{b, c\}, X\}$ and $(1,2)^* - GC(X) = P(X)$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ -g-continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{a,b\}) = \{a,b\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.13

Every $\tilde{g}(1,2)^*$ -continuous map is $(1,2)^*$ - αg -continuous but not conversely.

Proof

The proof follows from Remark 2.5 (vi).

Example 3.14

Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}\$ and $\tau_2 = \{\phi, X, \{b, c\}\}\$. Then the sets in $\{\phi, X, \{a\}, \{b, c\}\}\$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{b, c\}\}\$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b\}\}\$ and $\sigma_2 = \{\phi, Y, \{b\}\}\$ $\{\phi, Y\}$. Then the sets in $\{\phi, Y, \{b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a, c\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*-\tilde{G}C(X)=\{\phi,\{a\},\{b\},\{c\},\{b,c\},X\}\}$ and $(1,2)^*-\alpha GC(X)=P(X)$. Let $f:(X,\tau_1,\tau_2)\to$ (Y, σ_1, σ_2) be the identity map. Then f is $(1,2)^*$ - αg -continuous but not $\tilde{g}(1,2)^*$ -continuous, since $f^{-1}(\{a,c\})$ = $\{a, c\}$ is not $\tilde{g}(1,2)^*$ -closed in X.

Proposition 3.15

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ - α g-continuous but not conversely.

Proof

The proof follows from Remark 2.5 (vii).

Example 3.16

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{c\}\}$. Then the sets in $\{\phi, X, \{a, b\}, \{c\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, b\}\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{b\}\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a, c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - \ddot{G} $C(X) = \{\phi, \{c\}, \{a, b\}, X\}$ and $(1,2)^*$ - αG C(X) = P(X). Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ - αG -continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.17

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ -gs-continuous but not conversely.

Proof

The proof follows from Remark 2.5 (viii).

Example 3.18

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{b, c\}\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a, b\}\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $\ddot{G}C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*$ - $GSC(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Then $f: (1,2)^*$ -gs-continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.19

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ -gsp-continuous but not conversely.

Proof

The proof follows from Remark 2.5 (ix).

Example 3.20

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{b\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a, b\}\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, b\}\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - $\ddot{G}C(X) = \{\phi, \{a, c\}, X\}$ and $(1,2)^*$ - $GSPC(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ -gsp-continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

Proposition 3.21

Every $(1,2)^*$ - \ddot{g} -continuous map is $(1,2)^*$ -sg-continuous but not conversely.

Proof

The proof follows from Remark 2.5 (x).

Example 3.22

Let $X = Y = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{a\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a, b\}\}$ and $\sigma_2 = \{\phi, Y\}$. Then the sets in $\{\phi, Y, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}\}\}$ are called $\sigma_{1,2}$ -closed. We have $(1,2)^*$ - \ddot{G} $C(X) = \{\phi, \{b, c\}, X\}$ and $(1,2)^*$ -SG $C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is $(1,2)^*$ -sg-continuous but not $(1,2)^*$ - \ddot{g} -continuous, since $f^{-1}(\{c\}) = \{c\}$ is not $(1,2)^*$ - \ddot{g} -closed in X.

REFERENCES

[1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ, 12(1983), 77-90.

- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [3] Arya, S. P. and Nour, T.: Characterization of s-normal spaces, Indian J.Pure. Appl. Math., 21(8)(1990), 717-719.
- [4] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.
- [5] Duszynski, Z., Jeyaraman, M., Joseph Israel, M. and Ravi, O.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.
- [6] Kelly, J.C.: Bitopological spaces, Proc.London Math.Soc., 3(13)(1963), 71-89.
- [7] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [8] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.
- [9] Rajamani, M., and Viswanathan, K.: On ags-closed sets in topological spaces, Acta Ciencia Indica, XXXM (3)(2004), 21-25.
- [10] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of (1,2)*-continuity and (1,2)*-a -continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
- [11] Ravi, O. and Lellis Thivagar, M.: A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., (2), 29(1) (2006), 79-88.
- [12] Ravi, O. and Lellis Thivagar, M.: On stronger forms of (1,2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra., 14(6) (2004), 481-492.
- [13] Ravi, O. and Thivagar, M. L.: Remarks on λ -irresolute functions via $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [14] Ravi, O., Pious Missier, S. and Salai Parkunan, T.: On bitopological (1,2)*-generalized homeomorphisms, Int J. Contemp. Math. Sciences., 5(11) (2010), 543-557.
- [15] Ravi, O., Pandi, A., Pious Missier, S. and Salai Parkunan, T.: Remarks on bitopological (1,2)*-rw-Homeomorphisms, International Journal of Mathematical Archive, 2(4) (2011), 465-475.
- [16] Ravi, O., Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2) (2011), 177-187.
- [17] Ravi, O., Antony Rex Rodrigo, J., Ganesan, S. And Kumaradhas, A.: On $(1,2)^*$ - \ddot{g}_{α} -continuous functions in bitopological spaces (submitted).
- [18] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.